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Exact Solution for the Most General Minimally 
Coupled One-Dimensional Lattice Gauge Theories 
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We consider one-dimensional lattice gauge theories Constructed by the minimal 
coupling prescription. It is shown that these theories are exactly solvable in the 
thermodynamic limit. After considering the most general case, we discuss some 
special cases on finite lattices and also work out some examples. There is no 
phase transition in these minimally coupled theories. 

I N T R O D U C T I O N  

During the last two decades lattice gauge theories have been exten- 
sively studied (Wilson, 1974; Wegner, 1972; Kogut,  1979; Balian et  al., 

1974). Lattice theories have no ultraviolet divergences, they provide a 
nonperturbative approach to some theories, such as QCD (e.g., Wilson, 
1974), and they are theoretically interesting in themselves. They introduce 
possibilities which are absent in a continuum; for example, one can 
consider discrete gauge groups as well as continuous ones. So far, the main 
interest has been the study of lattice gauge theories (especially pure gauge 
theories) on multidimensional lattices (Wegner, 1972; Balian et  al., 1975). 
One cannot, however, consider the most general gauge theories on such 
lattices. 

In the case of  one-dimensional lattices, there is a dramatic change: 
there is only one Wilson loop (in closed lattices). So one can consider the 
general form of gauge-invariant interactions, including matter  fields as well 
as gauge fields. We will see that these theories are all exactly solvable in the 
thermodynamic limit. An example is the Kazakov -Migda l  induced gauge 
theory in one dimension studied by Caselle et al. (1992).  To be more 
specific, we consider gauge-invariant Hamiltonians with compact  gauge 
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groups, and show that a statistical system having such an interaction is 
exactly solvable in the thermodynamic limit (Section 1). We further show 
that in this limit the gauge degrees of freedom decouple from the matter 
degrees of freedom (Section 1). Then we consider more special cases where 
the matter part of the interaction becomes a noninteracting theory and 
observables become uncorrelated (Section 2). In some cases one can also 
compute things for finite lattices (Section 3). In Section 4 some examples 
are presented, and in Section 5 we consider double gauge field theories. 
These are all examples of exactly solvable nonlocal interactions. There is no 
phase transition in these theories, even at zero temperature. However, in a 
future paper, we will study a generalized version of these theories which 
does have nontrivial phase structure. 

0.1. Gauge Theory on Lattices 

Consider a lattice consisting of a given set of sites i and links (/j}. 
Next consider two sets V and 17, a function -:  V ~ 17, and a multiplication 
from 17 x V to 17V. Defining the matter field S on sites, one can write the 
Hamiltonian for a nearest-neighbor interaction as 

11o = -- ~ F ( s  (0.1) 
<i j> 

where F is a real-valued function. 
Now, suppose that a group G acts on the sets V and I 7 through 

S ~ , S  (0.2) 

( ~ )  = ~,~-1 (0.3) 

where ~ is a representation of g. Introducing a group element-valued field 
defined on links, one reaches a gauge-invariant Hamiltonian 

H~ = - ~ F($O<ij>Sj) (0.4) 
<u> 

This Hamiltonian is invariant under local gauge transformation (Balian et 
al., 1974) 

Si--' ~iSi (0.5) 

U<ij> --' gt U<ij>g71 

To this (matter field) Hamiltonian one can add another function, which is 
a conjugation-invariant function (class function) of Wilson loops (Balian et 
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al., 1974) 

H = -- ~ F(S,O<ij>Sj) - E(W,,, W,2 . . . .  ) 
<U> 

=." H m -F HG (0.6) 

where the W t are Wilson loops. 
Observables of this theory are of two kinds: gauge-invariant paths 

(~  W~...jSj), where Wi . . j  is a Wilson path starting from i and ending in j, 
and class functions of Wilson loops. Our task is to consider the partition 
function Z and correlation function (f~) of a statistical system having an 
interaction of the form (0.6), These are defined as 

z.=f(l-JdSi)(<~>dU<~j>)exp[-flH({X~},{U<~j>},] (0.7) 

• exp[-fiH({S~}, {U<i]>})]~({S~}, {U<~j>}) (0.8) 

In both cases the integration symbol is formal and may be integration or 
summation, according to whether we have a discrete or continuous set. The 
measure of the group is the invariant measure, and the measure of the 
matter field is also invariant under the action of the group. 

0.2. One-Dimensional Lattice Gauge Theory 

A one-dimensional open lattice has no Wilson loop, and a closed one 
has only one independent Wilson loop. So the Hamiltonian (0.6) is highly 
restricted and we have (for closed lattices) 

H = - ~  F(SeO~+I/2Si+1)-E(~i=, i U~+1/2) (0.9, 

where 

and 

XN+k '=Xk (0.10) 

Ui+ 1/2 := U<i,i + 1> (0.11) 

In one dimension, the number of gauge degrees of freedom is exactly 
equal to the number of gauge transformations. So it seems possible to 
eliminate the gauge field by suitable gauge fixing. This is almost the case: 
for open lattices this can be done and the Hamiltonian then reduces to Ho. 
So, for open lattices gauging has no effect. 
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If the lattice is closed, however, one cannot trivialize the Wilson loop 
by gauge transformation. In fact, by a suitable gauge transformation, 

i 

gi ~--- I-I Uk- 1/2, i < i < N (0.12) 
k = l  

tl~q l i r  
U,+~/2--* Uk -- 1/2, i =0  (0.13) 

t k ~  l 

So the gauge field can be absorbed neither from the matter Hamiltonian 
nor from the gauge part. However, we will show that, if the gauge group 
G is compact, in the thermodynamic limit (N --, oe) the Wilson loop has no 
effect on the matter Hamiltonian and the partition function correlators can 
be factorized. 

1. GENERAL RESULTS 

First, let us prove the factorizability of the partition function and 
correlators. To do so, first consider a case where G acts transitively on V 
(that is, V consists of a single orbit of G). Throughout this argument we 
assume that the group G is compact. We want to prove that, in the 
thermodynamic limit, the partial partition function 

is independent of the Ui+ ~/2 (f'= flF). Defining the transfer operator P(U) 
a s  

[~P(U)](S),= f ds" ~,(s,) exp[F(g'Gs)] (1.2) 

it is obvious that 

Z m ~ - "  tr[YI P(Ui+,/2)] (1.3) 

Now consider the following lemma 

Lemma. The eigenvector corresponding to the largest eigenvalue of 
the transfer operator P(U) is independent of U. 

Proof. From (1.2) we have 

[o~P(U)](S) <- max{~0(S')} f dS' exp[f(~'OS)] (1.4) 
J 



Minimally Coupled ID Lattice Gauge Theories 2301 

and, as the integration measure is invariant under the action of G, the 
integral in the right-hand side of (1.4) does not depend on U or S. So if ~, 
obtains its maximum at Smax, we have 

[r <_/2r 

where/2 is a constant: 

is, 

(1.5) 

/2 ,= J dS' exp[(S'US)] (1.6) 

Now suppose that ~, is an eigenvector of P(U) with eigenvalue 2. That 

We then have 

[~OP(U)](S) = 2~(S) (1.7) 

~O(Sm,x) -----/2~'(Smax) (1.8) 

One can always choose ~0 so that ~(Smax) is positive. Then, from (1.8), 

2 </2 (1.9) 

and equality holds iff we have equality in (1.4), that is, iff 

@(S) = const (1.10) 

Therefore the eigenvector of P(U) corresponding to its largest eigen- 
value is the constant function, which does not depend on U. The largest 
eigenvalue does not depend on U either. 

Note that in the proof we have used the compactness of G, and hence 
V, to guarantee the existence of a maximum for a continuous real-valued 
function on V. We also notice that the largest eigenvalue/2, defined through 
(1.6), is indeed finite. 

Using the above lemma, one can deduce that, in the thermodynamic 
limit, 

Zm =,/~U (1.11) 

So (setting e .-= fiE) 

= [/2 vol(G)] N 1 f d U  exp[e(V)] 
vol(G) J 

Z = [/2 voI(G)]Nv (1.12) 
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vol(G) = J dU (1.13) 

, f  
V.-vol(G----- ) dU exp[e(U)] (1.14) 

From now on we will use a normalization for the group measure such that 
the volume of the group becomes unity. 

This argument can be readily generalized to cases where V is not a 
single orbit of G. In such a case we have 

Zm=f([Ii dS,)exp[~if('iUi+,/2Si+,) 1 

=f(~ii dSl)expI~if(~ff, f-lgi+,/2gi+,Si+l) 1 

:f(I~JdSi)(~dgi)exp[~f(Si~7'Oi+,/2~i+,S,+,) 1 (1.15, 

where we have used the invariance of dSi under the action of the group. 
Now define a partial transfer operator Pc(U, S, S') by 

f dg't~(g') exp[f(o~'~ - 10~S)I (1.16) (~hPG )(g) 
J 

We then have 

Zm=f(H si)trE ,o  i+l/2 s,+ ! 
Similarly, the eigenvector corresponding to the largest eigenvalue of Pc is 
independent of U and depends only on the orbits of S and S', which we 
denote by IS I and IS'I. So, in the thermodynamic limit we have 

Zm=f@ds,)[H#(IS, l, lS,+ll)] (1.18) 

where # is the largest eigenvalue of Pc, and 

What about the correlation functions? This argument still works if we 
are considering correlators of observables confined to a finite region. By a 
suitable gauge fixing, one can eliminate the gauge fields in that region. 
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Then the above arguments are valid and, in the thermodynamic limit, the 
integral 

is independent of the Ui+ 1/2. So we have 

';(H ) (Olln) : - -  V dSi f~n exp(-flHm) 
vZm 

_lain f(~ii dSi)~fineXp(__flgm ) (1.20) 

and, as the right-hand sides are independent of the Ui+ 1/2, 

= (~~ (1.21) 

where by the subscripts H m and H o we mean averaging with Boltzmann 
weights corresponding to H m and H0, respectively, and 

~'~~ , {gi+l/2}):=~'~fin({Si},  {g i+l /2  = 1}) (1.22) 

Now suppose that ~ is the product of ~a and ~fi~, where ~a is a 
function of the Wilson loop. It is easily seen that 

= (Oc >Hc (f2~ >Ho (1.23) 

SO we have proved the following result: 

A one-dimensional gauge theory with nearest-neighbor interaction be- 
tween matter fields on a closed lattice with a compact gauge group is (as long 
as we are considering observables which are either local or functions of the 
Wilson loop), in the thermodynamic limit, effectively decomposed into two 
noninteracting parts: A matter part, the Hamiltonian of which is Hm (or 
equivalently 11o), and a gauge part, which is a one-particle system. 

2. MATTER FIELD SPACES CONSISTING OF A SINGLE 
ORBIT OF G 

In this case, one can completely eliminate the matter field by suitable 
gauge fixing (even for finite lattices). In fact, the partial partition function 

Zp := f (l~Ii dgi+ l/2 ) expf I~Ii f(,~iOi+ l/2Si+ l) + e(I~i gi+ l/2 ) 1 (2.1) 
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is independent of  the &. To see this, suppose that we change Sk to 

St  = ~& (2.2) 

leaving the other S~ unchanged. We then have 

gp(s'k)= f (1-TIi dUS+,/a)exp[ITIi f(s'~O~+,/zSi+l)+e([Ii u~+,/2)l (2.3) 

where we have made the change of variable 

O I e _ l / 2  = Uk_l/2g , Uk+l/2=g-lUk+l/2 (2.4) 

So 

Zp({S~ }) = Zp({S,.}) (2.5) 

It is easily seen that this argument can also be generalized to correlators. So 
we can eliminate the matter field and use the gauge-fixed Hamiltonian 

H g r . ' = - ~  F(COi+t/2C) - E(17[ i Ui+,/2) (2.6, 

where C is a constant member of V. Using the result of Section 1, we 
decompose the theory into two noninteracting parts (in the thermodynamic 
limit): 

(Hm)gr:= - ~  F(C0;+  ,/2C) (2.7) 
i 

and He.  But now there is no interaction in the matter part. So we conclude 
that, as long as we are considering local observables, the theory is free and 
essentially a one-particle theory. That is, observables at different points are 
uncorrelated, and of course distance-independent: 

(n ,  f~2 > = <n, >(f*2 > (2.8) 

if ~1 and f~= depend on no common Ui. We also have 

<f~> = <~'~>(Hm)gf, r(n) (2.9) 

where (Hm)gf, r~n) is the sum of those terms of  (Hm)gf in which the Ui 
contributing in ~ enter. In the above arguments, f~ is a function of 
gauge-invariant paths with the substitution S;--* C. 

The total partition function takes the form 

Z={(fdS)fdUexp[f(O3C)l}NfdVexp[e(U)l (2.10) 
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comparing this with (1.12), we find 

vol(V) fdUexp[f(COC)] = vol(G) fdS' exp [ f (g ' eS ) ]  (2.11) 

So any correlation function can be obtained by a (finite) number of 
integrations. As an example, consider pure gauge correlators, that is, class 
functions of  the Wilson loop. These functions are linear combinations of  
group characters (see the appendix); so one only needs to consider correla- 
tors of  the form 

(X'a( I~i Ui+l/2)) -IdUXu(U)- S dU exp[e(u)]exp[e(U)] (2.12) 

where X~, is the character of  the group in the (unitary) representation #. 
Here exp[e(U)] itself is also a class function, so one can expand it as 

exp[e(U)] = exp[flE(U)] 

= ~ I~C'e}(fl)X~. (U) (2.13) 
2 

where the summation runs over irreducible unitary representations of  G, 
and 

I!a'e)(fl) = f dU X~.(U-t) exp[flE(U)] (2.14) 

(see the appendix). From these we obtain 

(X~,(I]i Ui+ , /2) )  = I~'e)(fl) (2.15, I(oa,e~(fl) 
where fi is the complex conjugate representation of  #, and 0 is the trivial 
representation. There is a special case where one can go further and 
calculate correlators for finite lattices. We will consider this case in the 
following section. 

3. C O N J U G A T I O N - I N V A R I A N T  MATTER H A M I L T O N I A N S  
A N D  O B S E R V A B L E S  

As a special case o f  Section 2, consider a gauge-fixed matter Hamilto- 
nian having the property 

FCOC) = FC?, - l O~C) (3.1) 

If  we restrict ourselves to observables which have the same property, that 
is, invariance under local conjugation, we can compute correlators for finite 
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lattices. First we compute the partition function 

where 

Using 

we have 

fc(U) :=f(~UC) (3.2) 

exp[flFc(U)] = ~ I~C "Rc )(fl)X;.(U) (3.3) 
2 

{ ;q § 1/2},/~ 

and (using the appendix) 

f(I~i dUi+l/2)[rI i x;.i+t/2(Ui+l/2)lxfl(~I i Ui+l/2 ) 

where d(#) is the dimension of the representation #. So 

[i~G,~c )(fl) 1N I~'E)(fl) d(#) (3.6) Z Y 
"; L d(,) j 

Now, consider correlators of the form 

(~ii X~i +'/2(Ui+ ll2) ) =:({(7i+1/2}) (3.7) 

Every (conjugation-invariant) correlator can be expanded in terms of these. 
We have 

1 

{)'i + 1/2}*// 

lr(G,Fc ) i fF~ l-(G,E)[ l'~ x -i+ v2 ws-~ ws (3.8) 
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Defining nonnegative integers {p, v; ~b} through 

[p] | = @ {p, ~; ~}[~b] 

where [p], IT], and [~b] are irreducible unitary representations 
conclude that 

(3.9) 

of G, we 

o r  

and 

Xo(U) = 1 (3.13) 

one finds 

--~,~ <I~oG'rc)(fl) if ~ 0  (3.14) 

So, in the limit N--* o% 

Z = [I(o a'Fc )(fl)] NI(oa'~)(fl ) (3.15) 

<{ai+m}> -~ 2 {ai+,/2,2i+,/2;O}l;,,+,/2(fl) 
"l-i + 1/2 

1 
= _ i ( a  F c  ) (O,E) 

I (G'Fr (R~ 
= H  ~ <{~,+ ,/~}> ~' +, ~, - ,  

= [I <xo, + ,,=(u,+ ,/~)> 
i 

(3.16) 

,/2, i+~/2,#} ;,i+~/2(P) (a,e) 

(3.10) 

We see, as one expects from the very beginning, that these correlators 
are distance-independent. That is, they depend only on the set of a;+ ~/2, 
not on their ordering. One can also calculate the correlator for the 
characters of  the Wilson loop. The calculation is similar to the above, and 
one obtains 

I_ 2 [ I~'a'Fc )-(fl) lu 
,, L a(~) j 

One can also easily go to the thermodynamic limit. Using 

IX;.(U)I < d(2) if 2 :~ 0 (3.12) 
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Note that we have assumed that the observable is local, i.e., only a finite 
number of the ai+ 1/2 are nonzero. 

Finally 

I~'g)(fl) 
- ) (3.17) 

One can see that in this limit observables at different points are 
uncorrelated, and the theory is factorized into a matter part and a pure 
gauge part, just as is deduced from the previous theorems. Also note that 
if G is Abelian, the condition of  conjugation invariance is automatically 
satisfied. So all of the results obtained in this section are valid. 

4. EXAMPLES 

4.1. Gauge-Invariant Ising Model 

As the simplest case, consider 

Ho = - J  ~ SiSi+ 1 (4.1) 
i 

where each S~ takes the values + 1. Now, H 0 has global gauge symmetry 
under the action of gauge group Z 2. From this, one can construct the 
gauge-invariant Hamiltonian 

H = - J  ~ SiUi+ l/2Si+l - K H ui+ 1/2 ( 4 . 2 )  
i i 

where the Ui+ 1/2 also take the values _+ 1. 
This group has only two representations: the defining representation, 

and the trivial one. So, from (3.6), we have 

1 
Z ~- Z (z2) N (Z2) [I:. (flY)] I:. (ilK) 

where 

and 

i~oZZ)(x) ._1_ ~ exp(xU) = cosh x (4.3) 
" -2  v=_+l 

1 ~+ U exp(xU) = sinh x (4.4) 
= _ ,  
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So, 

Using 

where 

Z = coshN(flJ) cosh(ilK) + singN(ilJ) sink(ilK) (4.5) 

(O, z; r xr (4.6) t.,~,p + .~ 

10 m =1 (modn)  (4.7) 
~r~!l '= otherwise 

we have 

l [I~oZ~)(flK) H l~,,~z2)+ ~/=.r(BJ). + I{~Z2)(flK) H .l_~, + ,t }5 = , 

o r  

({ai+ , i2})= 
cosh(flK) coshU(ilJ) tanhS(flJ) + sink(ilK) sinhN(ilJ) tanh-~(ilJ) 

cosh(flK) coshN(flJ) + sink(ilK) sinhN(flJ) 
(4.8) 

(4.9) 
where 

S : = Z  O'i+ 1/2 
i 

Finally 

(I~J ) c~ sinhN(ilJ) + sinh(ilK) c~ (4.10) 
Ui+ 1/2 - cosh(ilK) coshN(flJ) + sinh(flK) sinhN(flJ) 

For N ~ ~ ,  

Z = cosh(flK) coshN(flJ) (4.1 1) 

({ cri +1/2 }) = tanhS(fl J)  (4.12) 

(l~I i U,+ ,i2) = tanh(flK) (4.13) 

4.2. Gauge-Invariant Potts Model 

Ho=-2J~(3s,,si+ -~) (4.14) 

where each Si is a nonnegative integer less than n. This Hamiltonian has 
global Zn invariance. The gauge-invariant Hamiltonian is 

" = - - 2 S  Z Ui+ ll2--Si,O - -  1/2 
i 
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where E is a periodic function on integers with period n. Now, Z, has n 
representations, the characters of which are 

[" i2~,km'~ X~. (m) ,= e x p ~ - - - ~  ) (4.16) 

We have 

So 

/~f" '~)(x) ..= 12~= ~o exp(i2r~m)exp(x6m,o) 

I~f"'6)(x) exp(x) - 1 + 6).,o 
n 

(4.17) 

{ I exp(2fiJ)--l lU z =  I~o~"'Ek~) 1+ 
n 

+Ii~l t I~"_)E)( f l )][exp(2~)- l]N}exp(-NflJ)  

o r  

Z = i(oZ. ,e)(fl) exp( -- flJ) + sinh(flJ) + sinhN(flJ) ~ -,1 (z" ~'E)(t~,~., ) 

(4.18) 

where we have 

C -'=- ~ exp - exp[xE(m)] (4.19) 
nm=o \ 

(2/n)u n~l {I(Z n E) 
<{~'+1/2}>= Y ~=o " - ' ;  (/~1~ 

,]} x exp( - BJ)6~..o, + ,/2 + sinh(flJ (4.20) 

- Z (z, e) n + sinh(flj) 1 (X~( I~u ,+ , / z ) )  (2/n)N{I,_~, (fl)[-~exp(--flJ) N 

n-  1 ,E) 
+ sinhN(flJ) ~ I~"_~_~(fl) (4.21) 

J 
One can easily verify that these relations reduce to those of the Ising model 
if n = 2 and E(x) = K cos(x). 
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In the thermodynamic limit one obtains 

Z =  n Io (8) ~ e x p ( - f l J )  + sinh(flJ) (4.22) 

[ sinh(flJ) I v (4.23) 
({~r,-b 1/2}) = (n/2) exp(- /~J)  + sinh(flJ) 

IX~(I~I Ui+ ,/2))-I~-'~)(fl)i(oZ,, .E)(fi) (4.24) 

where we have 

s .'= Z ( 1 - 6~i + ,/2.o) (4.25) 
i 

4.2. Gauge-Invariant Classical Planar Spin Model 

Taking 

Ho = - J  ~ Im(S* S,+ ,) (4.26) 
i 

where the S~ are phases, we see that the gauge group is U(1). The 
gauge-invariant Hamiltonian is 

H = - ~ II(S* U~+ ,/2Si+ I) - E(]-~I u~+ (4.27) 

where E is a function from U(1) to R. We parametrize the gauge group by 
~. There are (countably) infinite representations labeled by integers: 

Oj.(~) = exp(i2~) (4.28) 

We have 

IDU(I),J lm]( /~) := d~ exp(flJ sin ~ - i)o{) 

= i - % ( ~ ] )  

where I~.(x) is the modified Bessel function. We also have 

{p, ~; ~}  = 6,,p.b~ 

So 
-boo 

2 

(4.29) 

(4.30) 

U ltV~ ' )'el(fl) (4.31) Z = [ / -  ;'I;.(/~J)] _ ,  
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. 1 +~ {[[U(,).EI } 
{ai+ ,/2}) = -~ ~ -;. (fl) I-I [i-;'+~"/2I;.-,i + ,~(M)] g=--ov i 

(4.32) 

( exp ia ~i+,/2 =~;__~ [ i - ; ' I ; . ( f lY)]Ul~(f l )  (4.33) 

In the thermodynamic limit 

Z = [Io(flY)lgI~oUO)'el(fl) 

( {~ i + ,/2 } ) =171[ i:' + ''=,r *Io(fl)):z(flJ) l 

{exp[/o. (~ i ~/+ 1/2)1 ) i[.U(l,,El(fl) - IU1),~l(/~) 

4.4. Z 2 Gauge Theory on Multiple-Orbit Matter Field Space 

(4.34) 

(4.35) 

(4.36) 

As our last example, consider a generalized form of gauge-invariant 
Ising model, where the Si can take a set of  values {am } which are symmetric 
with respect to zero and have absolute values less than or equal to unity. 
The gauge-invariant Hamiltonian is of the form (4.2). Using the results of 
Section 1, we have 

1 
p([S,I, IS,+, [).'= ~ {exp[flY(SiS,+ 1)1 + exp[-flJ(S,S~+ ,)1} 

= cosh(flJSiSi+,) 

gm = Y~ cosh(/~JS, S , + , )  
{sl} 

So Zm is (in the thermodynamic limit) the 
eigenvalue of the matrix M with the entries 

For example, 

{am} = {0, +1} 

M pq ,= cosh (flJapaq ) 

(4.37) 

(4.38) 

Nth power of the largest 

1 + 2cosh(flJ) + [4 cosh2(J) - 4 cosh(flJ) + 9] 1/2 
:=~ '~max - 2 

{am} = {_+ 1/3, +_1} 

2ma x = cosh(flJ) + cosh(flJ/9) 

+ {[cosh(flJ) - cosh(flJ/9)] 2 + 4 cosh2(flJ/3) } 1/2 

(4.39) 

(4.40) 

(4.41) 
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In either case, 

Z = cosh(flK)(2ma x ) N (4.42) 

Finally, if the set of possible values of the S/is the interval [ - 1, 1], we 
must solve the eigenvalue problem 

2A(x) = cosh(flJxy) A(y) dy (4.43) 
1 

for its largest eigenvalue, and insert it in (4.42). 

5. DOUBLE GAUGE FIELD THEORIES 

There is a special case where the theory has more invariance proper- 
ties. Consider the Hamiltonian 

H o = - ~ F(S[-1gj) (5.1) 
G J> 

where the S, themselves belong to a non-Abelian group G, and F is a 
real-valued class function on G. The Hamiltonian H o has two independent 
global symmetries: 

S~ -+grS~, Si ~ S~gR (5.2) 

where g/_ and gR are group elements. Introducing two gauge fields L and R, 
one can make both of these invariances local. The general form of  gauge 
transformation is 

&-+ (gr),S, (gR), 

L<v> -+ (gL);L<o> (gL) j  t (5.3) 

ROj> ~(gR)~R<o>(gR)j 

It is easy to see that 

Hm = - ~ F(Si'L<ij>SjR<j o) (5.4) 
(i j> 

is gauge-invariant. We can also add class functions of  Wilson loops to the 
above expression. In one dimension, one comes then to the Hamiltonian 

(0 - ) H = - ~ I  F(S. 'Li+, /2Si+,Ri+, /2)-E Li+,/2,1~Ii Ri+~/2 (5.5) 

where 

Li+ 1/2 '=  L( i , i+  1> (5.6) 

Ri+ l/2'= R<i+ l.i> (5.7) 
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H X : =  X l X 2  �9 �9 �9 

[I Yi :=''" Y2 Y, 
i 

By gauge-fixing, one can eliminate the S; and come to 

Hgf=-2F(Li+li2Ri+l/2)-E(OLi+ll2'ORi+'i2)i 
from which (using the appendix) we find 

V I(G,F) t wt -IN 
] ~ tp~] I(a,E)tB~ 

Z = Z L  d-~- 7 i-~: ,-, 
where 

and 

(6,E) 
exp[flE(L,R)]=, ~ I).L.x.(fl)Xxc (L)X;o.(R) 

2L ,)'R 

The observables of this theory are 

[~ [X~, + ,:2($7 'L,+ ,/2S,+, R,+ ,/2)] i 

Khorrami 

(5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

In a manner similar to the previous cases, one finds 

1 ,G E) 1 Z {~,+ ,/2, :,,+ ,/2; #} ,, +,,2(fl) <{~,+,:2}) 2 &,i; (fl) d-~,, +,,, 

(5.13) 

- ( a , E )  _/~'7~ '(fl) (5 .14)  
=�89 Y {oL,~L;Z}{~.,~R;~}&L,..(fl) dCX) 

)-,PL ,/*R 

We see that the matter field correlations are distance-independent. In the 
thermodynamic limit, 

(G,F) N (G,E) 
Z = [Io (fi)] Io,o (fl) (5.15) 

[r +,,lo, r)(~) 1 (5.16) <{~:+ I/2}) rl 
%" L Io(G, f)(fl) J 
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l (a'e) (l~ 

In fact, in the thermodynamic limit we are faced with two decoupled 
interactions: a one-particle interaction and a two-particle one. 

6, CONCLUSION 

We have shown that a one-dimensional gauge theory for compact 
gauge groups is exactly solvable in the thermodynamic limit. In fact, in this 
limit the gauge degrees of freedom completely decouple from the matter 
degrees of  freedom. The gauge part then reduces to a one-particle theory. 
If  the gauge group acts transitively on matter field spaces, then the matter 
part also reduces to a noninteracting system. In such a case, all of  the 
observables will be uncorrelated. We saw that there are certain cases where 
the correlators become distance-independent even for finite lattices. So far, 
there has been no phase transition in these theories, However, in a future 
paper, we will introduce a generalization of  these theories which does 
exhibit a first-order phase transition. 

A P P E N D I X  

Here we introduce a couple of group identities used in the text. Take 
a compact group G, and let X;.(g) be the character (trace) of the element g 
in the (irreducible unitary) representation 2. We have 

Xz(g) = [X;.(g)] * 

= X; . (g - ' )  (A1) 

where )~ is the complex conjugate representation of  2. Moreover, 

f , -- l X). (hh/) 
dg X;.(hg)X~,(h g ) + ~ a;... (A2) 

where d(2) is the dimension of  the representation 2. 
Any complex-valued class function on G can be expressed as a linear 

combination of  the characters: 

F(g)=F(hgh-') ~ F ( g ) = ~  A~a'r)x;.(g) (A3) 

and 

A ~G,F) _-- fdg F(g)Xz(g -') (A4) 
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In particular, 

exp[xF(g)] = ~, I~G'F)(x)X:.(g) 
2 

I~G'r)(x) = f dg exp[xF(g)] X:~(g- i) 

(AS) 

( A 6 )  
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